DMS – Distribution Management System

Distribution Management System (DMS)

The SurvalentONE DMS features a wide-range of applications that enable utilities to analyze and optimize their networks more efficiently. This advanced suite of software is designed to help you improve reliability and quality of service by maintaining acceptable frequency and voltage levels, reduce outages, and minimize outage time. It can be seamlessly integrated with SurvalentONE SCADA and OMS, making your grid more reliable and resilient.

SurvalentONE Distribution Management System Brochure

Demand Response

Utilities leverage Survalent’s Demand Response capabilities through three optional applications:  Dynamic Voltage Regulation (DVR), Load Curtailment, and Rotational Load Shedding (RLS). Each function is integrated on the SCADA host, and accessible through the SmartVU interface.

Distribution Power Flow (DPF)

The SurvalentONE ADMS supports a Distribution Power Flow (DPF) application that provides a power flow solution for the power system that best fits the power system model and the SCADA feeder measurements in the substations. The DPF application computes and presents phase voltages, currents, and losses on the entire distribution network. The enhanced visibility that DPF provides offers benefits such as improved detection of system problems including overloads and voltage violations, and accurate assessment of line losses.

SurvalentONE Distribution Power Flow (DPF) & Distribution State Estimation (DSE)

Distribution State Estimator (DSE)

The Distribution State Estimator (DSE) function extends the functionality of Distribution Power Flow (DPF). The DSE function:

  1. Makes use of SCADA measurements outside the substations
  2. Perform consistency checks and elimination of time skews on all measurements
  3. Adds modelling of micro-grids (with use of telemetered data) and distributed generation (e.g. rooftop solar panels) and incorporates these into the DSE calculation, with reverse power flow capability.

SurvalentONE Distribution Power Flow (DPF) & Distribution State Estimation (DSE)

Dynamic Voltage Regulation (DVR)

Dynamic Voltage Regulation (DVR) provides capabilities for reducing peak demand and management of optimal feeder voltage limits.  It is designed to operate automatically and adjust the voltage regulator set points and/or transformer tap positions to maintain a voltage profile that is within the objective limits without the need for complex programming by the utilities. The advance control algorithm is optimized based on multiple objective functions, such as minimum control (conservation), or minimum voltage (peak reduction).

SurvalentONE Dynamic Voltage Regulation (DVR)

Fault Location, Isolation, & Service Restoration (FLISR), and Loss of Voltage (LOV)

The SurvalentONE Fault Location Isolation and Service Restoration (FLISR) application helps minimize the downtime caused by outages that trip and lock out devices in a distribution network. FLISR works in conjunction with SCADA, telecommunications, and distribution automation devices to decrease the number of customers affected by a power outage by automatically opening and closing switches to isolate compromised sections of line and to re-energize healthy sections of the system to restore energy distribution. Our centralized FLISR system consists of a variety of remote telemetered devices, a communication network linking the devices to the control room, and a software application for monitoring and controlling the devices. This type of system can yield outsized benefits for an electric utility.

SurvalentONE FLISR includes our Loss of Voltage (LOV) application, which monitors the network for sudden voltage drops. When the LOV algorithm detects a loss of voltage in the grid, the application will attempt to isolate the cause of the voltage loss from the network and reroute power to as many customers affected as possible.

SurvalentONE FLISR Brochure

Fault Location Analysis

Fault Location Analysis helps control room operators increase the precision with which they can locate faults in the electrical grid, enabling them to pass along more exact position coordinates to the repair crews. SurvalentONE’s analysis software uses fault data collected from the field to calculate the most probable fault location(s). Based on the results of Fault Location Analysis, utilities can deploy efficient, targeted repair operations in the field and reduce the duration of power outages.

SurvalentONE Fault Location Analysis Brochure

Load Curtailment

The Load Curtailment application provides the ability to reduce load in response to event triggers. The application monitors a set of database points to determine the control actions to perform. These database points can be set by command sequences, calculated points, external entities via ICCP, or any other mechanism that can trigger a load shed event.  The Load Curtailment application reacts to each control set’s inputs by issuing controls to the appropriate breakers and switches or by issuing load shed commands to load control receivers via load management controllers.

Short-Term Load Forecasting

Load forecasting is an important tool for planning, triggering load management strategies, and for determining unit commitment schedules. Short-term load forecasts are generally more reliable than long-term forecasts due to the variability of weather forecasts. The Survalent ONE Load Forecast application can produce 3 types of forecasts:

  1. 24-hour forecast based on the full historical load and weather data,
  2. 7-day (168-hour) forecast based on the full historical load and weather data, and
  3. 24-hour forecast based on recent load data only (the application will also produce interpolated predictions for 15, 30, 45 and 60 minutes into the upcoming hour)

For utilities that subscribe to weather forecast data, the applications can import both forecast and historical data from text files.

Power Factor Control

The Power Factor Control application reduces power system losses and power factor penalties by monitoring and correcting the power factor at specified locations within the distribution network and issuing controls to the appropriate substation-level and feeder-level capacitor bank controllers.

Protection Settings Manager (PSM)

The Protection Settings Manager (PSM) application allows the SurvalentONE system to maintain active protection settings in protection relays. By analyzing the current system configuration, and applying user-defined rules, PSM issues controls to the relays to switch to the appropriate protection settings groups (digital and analog output controls are supported).  The PSM will verify the need for changes in protection settings in response to any network event, including a load transfer initiated by the operator. As a result, protection settings are always up-to-date across the network according to the as-operated network state.

PSM can function as a standalone application, or as an add-on to the Fault Location, Isolation and Service Restoration (FLISR) and Loss of Voltage (LOV) applications.

Key Features:

  • PSM employs a rules-based approach to determine which protection settings to us
  • The ‘delay to verify’ setting enables system to ensure the network is in a steady state prior to command execution;
  • PSM rules can consist of a combination of parameters relating to line sections, analog or status points;
  • PSM can be ‘paused’ when the protection relay is tagged, or if the station is in maintenance mode.

SurvalentONE Protection Settings Manager (PSM) Brochure

Rotational Load Shedding (RLS)

Rotational Load Shedding (RLS) is used by electric utilities as an emergency measure when electricity demand will exceed electricity supply for an extended period of time. To avoid a full system blackout, different portions of the distribution grid are de-energized and then re-energized on a schedule basis such that the total demand stays within the available supply.

Volt/VAR Optimization (VVO)

VVO/VAR is an advanced application designed to improve energy efficiency in the distribution system by reducing both energy losses and peak demand. It coordinates control of reactive power and voltage, to optimize user objectives subject to defined constraints. VVO performs optimization and issues controls at both the substation and feeder level.

VVO determines the optimum control actions to achieve operator-specified operating objectives for:

  • Loss Minimization: reduce losses at transformers at substations, and at lines along the feeders.
  • Energy Conservation: reduce load by minimizing voltage throughout the network within constraints.
  • Voltage Reduction

Survalent VVO provides optimized control at the system level, surpassing control through local controllers. As a network-based solution, it addresses more system conditions than a rule-based algorithm.

SurvalentONE Volt/VAR Optimization (VVO) Brochure

Voltage Reduction

The Voltage Reduction application provides the ability to reduce, maintain, or restore system voltage in response to event triggers. The application monitors a set of database points to determine the control actions to perform. These database points can be set by command sequences, calculated points, external entities via ICCP, or any other mechanism that can trigger a voltage reduction event.